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Several endomorphisms of a plane have been constructed by coupling two logistic maps. Here
we study the dynamics occurring in one of them, a twisted version due to J. Dorband, which
(like the other models) is rich in global bifurcations. By use of critical curves, absorbing and
invariant areas are determined, inside which global bifurcations of the attracting sets (fixed
points, closed invariant curves, cycles or chaotic attractors) take place. The basins of attraction
of the absorbing areas are determined together with their bifurcations.

1. Introduction

Sequences of bifurcations governing the route to
chaos in one-dimensional endomorphisms have been
extensively studied since 1975 [Mira, 1975; Gumow-
ski & Mira, 1975a,b,c, 1980a,b], we refer to Mira
[1987] for a review of the main results obtained so
far. However, models reducing to two-dimensional
endomorphisms are often obtained in several fields.
Up to now, they have been mainly studied by nu-
merical simulations. Several properties and bifur-
cations may be characterized, and basic tools of a
theory obtained, by use of critical curves. Criti-
cal curves of a two-dimensional endomorphism, first
considered by Gumowski and Mira, are generaliza-
tions of the critcal points of a one-dimensional endo-
morphism. In the latter case, the fundamental role
played by critical points in determining and clas-
sifying global bifurcations (in particular homoclinic
bifurcations) has been developed by several authors;
besides the references cited above; see Collet & Eck-
mann [1980] and Devaney [1989]. The fundamen-
tal role played by critical curves in two-dimensional
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endomorphisms has been developed by Mira since
1965 [Mira, 1965, 1966, 1969; Gumowski & Mira,
1977, 1978, 1980a,b] and recently by his collabora-
tors (as we shall recall in Sec. 3).

In this paper we analyse an exemplary case. We
make use of extensive simulations to show the par-
ticular role played by critical curves in determining
properties and global bifurcations. The chosen ex-
ample is the family of two-dimensional maps T},
which represents a coupled pair of logistic oscilla-
tors, T : R? — R?, (z, y) — (2, /), as a function
of a real parameter A, defined by:

{x’ =(1-XNz+42y(1—-y)

Y =1-Ny+z(l-z)’ Aelo 1.

(1)

To simplify the notation, in the following we
shall write T instead of T, as the dependence on
the real parameter A is understood. This map may
be considered as a model of a two-dimensional os-
cillator. Several two-dimensional models of oscil-
lators, derived from various applied fields (mainly
physics and engineering, but also biology, ecology
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and economics), have been published up to now.
See, for example, Kaneko [1983], Hogg & Huber-
man [1984], Van Biskirk & Jeffries [1985], Lorenz
[1989], Taylor [1990], De Sousa Vieira et al. [1991],
Gaertner & Jungeilges [1992], Aicardi & Invernizzi
[1992], and Lopez-Ruiz & Perez-Garcia [1992]. The
map considered here is a particular case. However,
the methodology we use may be applied to more
general models.

The plan of the work is as follows. The fixed
points of T', and their local stability analysis, will be
determined in Sec. 2. In Sec. 3 we shall briefly recall
some definitions and properties concerning the crit-
ical curves, to be used in subsequent sections. As it
is immediate to see, T is a map with a nonunique
inverse. The definition of its inverses (identifying
their number, domains and ‘codomains) is given in
Sec. 4. In Sec. 5 we consider the regimes in which
there exist two disjoint symmetric attractors, not
fixed points of T', and in Sec. 6 the regimes in which
T possesses a unique attractor, with symmetry. In-
side the basins of attraction we shall determine the
absorbing areas bounded by arcs of critical curves.
The critical curves will be a basic analytical tool of
our study. They will be used:

(a) to define the domains and codomains of the in-
verses of T' (which in turn are the basis for in-
terpretation of the dynamics of T');

(b) to determine absorbing areas, simply connected
or annular;

(c) to characterize the global bifurcations (that is,
qualitative changes in the dynamics of T', which
are not related to the local bifurcations of some
cycle, or periodic orbit, or T'), and in particular
contact bifurcations.

2. Symmetry and Fixed Points of T

In this section we establish symmetry properties in
the dynamics of the double logistic map T and iden-
tify its fixed points. The eigenvalues (or character-
istic multipliers) and eigenvectors of the derivative
(or Jacobian matrix) of T', DT, evaluated at these
points, are determined via classical analysis.

2.1.
Let

Symmetry

P:R? > R?, (z,9) — (y, z)

denote the reflection through the diagonal

A = {(z, )} C RZ. 2)

Proposition 2.1. T is symmetric, or ToP = PoT.

Proof. Let fi(z, y) = (1 — A\)z + 4Ay(1 — y). Then
PoT(z, y) =P(T(z, y))

=P(fi(z, v), frly, )

= (f)\(y’ :L‘), f)\(wa y))
=T(y, z) =T oP(z, y).

Thus T' commutes with P. We have the following
corollaries:

Corollary 2.1. The diagonal A is invariant:

T(A) = A.

Corollary 2.2. If P is a fized point of T, so is

P(P).

Corollary 2.3. If P € A is a fized point of T, then
r(1, 1), r € R, is an eigenvector of DT(P).

Corollary 2.4. If {pi, i € N} is an orbit of T, so
is {P{p;), i € N}.

Corollary 2.3 will be proved in Sec. 2.4; the others
are immediate. W

2.2. Restriction of T to A

We now focus on the dynamics of T restricted to the
invariant diagonal A. Let (z, z) € A and (2/, 2') =
T(z, z), then the restriction Ta reduces to a one-
dimensional map, say

7 =ga(2), (3)

where gx(z) is a logistic function in nonstandard
form:

g (z) = (14 30z — 4r22. (4)

For its graph, note that g(z) = 1+ 3A — 8z and
gy(z) = —8X < 0 (for A > 0). Thus, a local maxi-
mum (called a critical point of rank-0 of g)) exists
for A > 0, at c_; = 3/8+1/8A. The critical point of
g of rank-1 (in the sense of Julia and Fatou, that is,
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Fig. 1.
()A=1,c.1=1/2,c=1,¢, =0.

the locus of points having two coincident preimages
of rank-1) is the point ¢ = ga(c-1), and the critical
points of gy of rank-(i+ 1) for i > 1 are the forward
images (or iterates) ¢; = gyt (c—1) = gi(c). The
fixed points of gj(z), solutions of the equation z =
2(14+3X—4)z), are the origin, 27 = 0, and s* = 3/4.
About the multipliers, note that g} (0) =1+3X > 1
and g)(3/4) = 1 -3, which decreases from 1 to —2
as A increases from 0 to 1, going negative as A passes
1/3, and crossing the flip-bifurcation value —1 at
A = 2/3. The qualitative shapes of the function gy
as A increases from 0 to 1 are shown in Fig. 1 (for
three particular positions).

The dynamics of the map gx can be obtained
from that of the Myrberg’s map, or of the standard
logistic map, by an homeomorphism. A complete
description of the complex bifurcation mechanism
of type “box-within-a-box” (each box containing
a sequence of flip-bifurcations known as Myrberg-
cascade or Feigenbaum-cascade) can be found in
Mira [1987]. We recall the bifurcation diagram,
shown in Fig. 2, of 2z versus A for 0.6 < A < 1
(the interval 0 < A < 0.6, in which the fixed point
s* is attracting, has been omitted). The value A =
A1s =~ 0.8566 denotes the first accumulation value of
the first Myrberg-cascade, related to the sequence
of flip-bifurcations starting from that of the fixed
point s* (the flip-bifurcation of s* opens the first
box of the second kind, inside the first box of the
first kind. See for example Mira [1987] for defini-
tions). The value A = A}, ~ 0.8929 is the closure of
the first box of the second kind, homoclinic bifurca-
tion of the fixed point s* (that we shall reconsider
in Sec. 5).

It is common nowadays to say-that the dynam-
ics of gy enters in a chaotic regime for A > Ay,

([0 S
P S

B

s‘=c_‘=c 1 cq

Qualitative shapes of the function g, defined in (4). (a) A =1/5,c-1 =1, ¢c=4/5 (b) A =1/3, c.1 = ¢ = 3/4;

0.6 06

M X0 1 A

Fig. 2. Bifurcation diagram of g defined in (4), z versus A.

which is due to the fact that infinitely many re-
pelling cycles exist, and these increase as A increases
up to A = 1. We note however that for any given
value of A, beyond ), the asymptotic behavior of
the generic trajectory in (0,1) is either an attract-
ing cycle or cyclic-invariant chaotic intervals. The
attracting cycles are rarely observed (due to the ex-
istence of long chaotic transients coupled with nu-
merical truncation errors), and we may speak, in
these cases, of “unstable-chaos,” reserving the term
“stable-chaos” for those values of A (bifurcation val-
ues) at which cyclic-invariant chaotic intervals ex-
ist. In short, we shall use the term “chaotic regime”’
or “chaotic dynamics” to denote either the case
of unstable-chaos or that of stable-chaos, noticing
that, generally, numerical observations deal with
the case of unstable-chaos, and justifying our choice
because in this case also closed invariant Cantor sets
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exist, on which the dynamics of the map are chaotic
(in the strict sense).

Similar considerations may be done for the dy-
namic behavior of the two-dimensional map T, and
the same terms are used henceforth with the mean-
ing given above.

We note also that for any value A > 2/3, the
(unique) attracting set of the map gy belongs to
absorbing intervals or invariant intervals (defined
in Sec. 3) bounded by critical points.

2.3. Fized points of T

Besides an attracting set of T' at infinity (or at in-
finite distance from the origin), on the Equator of
Poincaré T possesses four fixed points at finite dis-
tance, belonging to the closed unitary square of the
nonnegative quadrant R2, R2 = {(z, y) eR?: z >
0, t > 0}, where, as we shall see, the interesting
dynamics of T take place.

From Corollary 2.1 and the discussion of gy
above it follows that the origin O = (0, 0) and the
point S* = (3/4, 3/4) are two fixed points of T on
A. We determine now the fixed points (z*, y*) with
z* # y* from direct computation. From the defini-
tion of T in (1) (putting ' = z and ¥ = y) we get
the following system:

r=4y(1-y) = f(y),
y=4$(1_$):f(517),

where f(z) = 4z(1—z). It follows that if (z*, ¥*) is
a fixed point of T with z* # y* then z* and y* are
points of a 2-cycle of f(z). As the logistic function
f(z) possesses only one 2-cycle (see Fig. 3), we get
two more fixed points of 7', and no others exist.
The values of z* and y*, coordinates of the two
fixed points, say Py = (z*, y*) and Py = (y*, =%),
symmetric with respect to A, can be obtained from
the solutions, other than & = 0 and z = 3/4, of the
equation z = f(f(z)). For z # 0 it it equivalent to

15 — 80z + 12822 — 642> = 0

and, factoring out the other solution z = 3/4 al-
ready found, we have

(m—g)(16m2—20z+5):0,

so that, assuming z* > y*, we get * = (5 +/5)/8
and y* = (5 — v/5)/8 (that is, z* ~ 0.904508,
y* ~ 0.345442).

1
o/

*

0.5

-~
]
*
=
o]

Fig. 3. Graph of f¥(z), f(z) = 4z(1 — ).

In summary, the four fixed points of T' are

. (33
O’(O,0)7 S—(Za4>>

(5)
Pr=(z*y"), PR=(@"2")
where
., 5+v5 . 5-45
= Y=g (6)

Note that, uncharacteristically, all the fixed
points are independent of the control parameter A.

2.4. Figenvalues and eigenvectors
of DT at the fized points

The Jacobian matrix of T as a function of the state,
P = (z, y), and of the control parameter A is

1—Xx 41 —2y)]

AA1-2z) 1-2X )

DT(z, y; \) = [
We consider DT at the four fixed points, one at
a time.

(1) At the fixed point O = (0, 0) we have
1-X  4X ]

DT(0; ,\)=[ o 1o

with eigenvalues s; = (1 + 3\) [with eigenvector
r(1, 1)] and s3 = (1-5A) [with eigenvector r(1, —1)].
Thus the origin is repelling along A, as s; > 1 for
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Fig. 4. Local invariant manifolds of the origin for (a) A <
0.4; (b) A > 04.

any A > 0. Along the orthogonal direction we have
attraction if A € (0, 0.4) and repulsion, with sy <
~1, if A > 0.4. Thus, the origin is a saddle for
A € (0, 0.4), and a repelling node for A > 0.4. The
bifurcation occurring at A = 0.4, a flip-bifurcation
due to s; = —1 renders the attracting branch of the
saddle repelling, on which a repelling 2-cycle saddle
appears. See the schematic picture in Fig. 4, where
the points of the 2-cycle, symmetric with respect to
A, are named R; and Rjy.

(2) At the fixed point S* = (3/4, 3/4) we have

—2)
1—A]'
The eigenvalues of DT(S*) are s; = (1 — 3)) [with
eigenvector (1, 1)] and s = (1+ ) [with eigenvec-
tor 7(1,—1)]. Thus along a direction orthogonal to
A the fixed point S* is repelling for T, as s3 > 1
for any A > 0. Along the direction of A we have at-
traction if A € (0, 0.6) and repulsion, with s; < —1,
if A > 0.6. Stated otherwise, S* is a saddle of T
for A € (0, 0.6) and a repelling node for A\ > 0.6.
The bifurcation occurring at A = 0.6 (analogous to
the one discussed above for the origin) creates a re-
pelling two-cycle saddle on the line A, the points
of which are denoted by @3 and Q,. That is, at
A = 0.6 the following transition occurs: S* saddle of
T — S* repelling node of T+ two-cycle Q1 — Q5 sad-
dle of T (and it corresponds to the flip-bifurcation
of the fixed point s* for the restriction of T' to
A’ gA)

(3) At the fixed point P} = (z*, ¥*) we have

1-2

DT(S*; \) = [_2)\

A1 - 2y%)

. 1-A
DT(Py) = 1—2X

40(1 — 2z*) ’

where the values of x* and y* have been given in
(6). After straightforward algebraic operations it
may be seen that in this case we have a complex
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pair of eigenvalues 512 = (1 — A\) & 2\i, with mod-
ulus |s12] = 1 — 2X + 5)2, s0 that |s1,2] < 1 for
A€ (0,04) and |s12| > 1 for A > 0.4. Thus, the
fixed point Py is an attracting focus for A € (0, 0.4)
and a repelling focus for A > 0.4. A Neimark-Hopf
bifurcation occurs at A = 0.4.

(4) Due to the symmetry property of T, the
local analysis of DT(Py) is the same as that of
DT(Py), so that the fixed point P§ is an attract-
ing focus for A € (0, 0.4) and a repelling focus for
A>04.

3. Critical Curves

In this section we recall some definitions and
properties concerning the critical curves of a two-
dimensional endomorphism, depending on a real pa-
rameter A : p' = T(p, \) = (f(p, A), g(p, A)), where
p = (z, y) is a point of R?, f and g are real-valued
continuous functions, piecewise continuously differ-
entiable. The point p; = T*(p) for i > 1 is called the
image (or consequent, or forward iterate) of rank-
i of p. The preimages (or antecedents, or back-
ward iterates) of rank-i of p are the points which
are mapped into p after ¢ applications of the map
T. The critical curve of rank-1 of T, denoted as
LC, is the locus of points having at least two co-
incident preimages of rank-1. When f and g are
continuously differentiable functions, LC is gener-
ally the image by T' of LC_;, where LC_; is the
locus of points in which the Jacobian of T vanishes:

LC, ={p e R*: |DT(p)| = 0};
LC =T(LC-,)

As LC_; denotes the locus of the coincident pre-
images of LC, it results LC = T(LC_;); note how-
ever that LC_; C T~ }(LC) and the inclusion is
strict, LC_; C T-Y(LC) if T possesses more than
two preimages (as in the case which interests us in
this work). In such cases, the preimages of rank-1 of
LC, distinct from LC_;, are called ezcess preimage
curves.

Critical curves of rank-(i + 1) of T are the im-
ages of rank-i of the critical curve LC, that is,
LC; = TYLC) = T*Y(LC-y), i > 0, assuming
LCy = LC. The critical curve LC separates the
plane into open regions. The points of each re-
gion possess the same number of distinct preimages
of rank-1.

Critical curves play the same important role
as the critical points in one-dimensional endomor-
phisms in determining dynamic properties and
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bifurcations in maps with a nonunique inverse. Sev-
eral properties may be found in Gumowski & Mira
[1980a], Barugola [1984, 1986], Cathala [1983, 1987,
1990], Barugola & Cathala [1992], Gardini {1991,
1992a,b], Gardini, Mira & Fournier [1992] and Gar-
dini, Cathala & Mira [1992|. The critical curves
have been used to determine the boundary of par-
ticular trapping or invariant regions, called absorb-
ing areas and chaotic areas (inside which several
bifurcations and transitions to chaotic regimes take
place), and to characterize the bifurcations related
to these sets. We recall below some definitions.

A subset A of the plane is called trapping if it
is mapped into itself by T, T(A) C A; it is called
invariant (or forward invariant) by T if T'(A) = A,
backward invariant by T if T~1(A) = A.

An absorbing area d' is a closed subset of the
plane, bounded by a finite number of arcs of crit-
ical curves, which is trapping, T(d’) C d', and for
which a neighborhood exists, the points of which
have an image of finite rank in the interior of d'.
Its basin of attraction D(d’) is an open set of points
having an image of finite rank in d’. Its frontier (or
boundary) F = 8D = 0D is backward invariant for
T : T"YF) = F. d may contain one or several
attractors, which may or may not be chaotic.

An annular absorbing area is an absorbing area
of annular shape, that is, a simply connected area
deprived of the points of a hole in its interior.

A chaotic area d is an invariant area of d',
bounded by critical arcs or limit points of critical
points, which contains a chaotic invariant set. In
the simplest cases, the boundary of d is made up of a
finite number of critical arcs. A chaotic area d may
be destroyed or modified by a nonclassical bifurca-
tion, called contact bifurcation, characterized by a
contact between its boundary 8d and the bound-
ary F of its basin of attraction [Gumowski & Mira
1980a, pp. 368-371]. After the bifurcation, in the
region which was occupied before by d, in short the
“old area d,” we may observe either a chaotic tran-
sient towards one attractor (at finite or infinite dis-
tance) or a fuzzy boundary (or fractal in the sense
of Grebogi [Grebogi et al., 1983]) separating the
basins of several attractors or chaotic areas. Several
examples are described in Mira & Narayaninsamy
[1992], and we shall see several of these different
cases occurring in our map 7.

Throughout this work, the arc of some curve
connecting a point p to a point ¢ will be denoted by
the contracted form pq.

In general, an absorbing area d’ can be deter-
mined with boundary 8d’ made up of a finite num-
ber of critical arcs belonging to the images of an arc,
say bpag of LC_;. Moreover, if a fixed point P* be-
longing to d' is expanding, but is not a snap-back
repeller (SBR henceforth), then an annular absorb-
ing area d, C d’' can be obtained, with external and
internal boundaries made up of a finite number of
critical arcs belonging to the images of the arc bpag
of LC_y. The bifurcation related to the appear-
ance or disappearance of an annular chaotic area
[or equivalently of a hole W(P*) surrounding the
expanding fixed point] has been studied in Baru-
gola et al. [1986] and Gardini [1992a].

We recall that a fixed point P* of a map T is
expanding if there exists a neighborhood U of P*
such that all the eigenvalues of the Jacobian matrix
DT (p) are greater than 1 in absolute value for all
p € U. A point q is homoclinic to P* if there exists
a positive integer j such that T9(g) = P* and a
sequence of preimages of ¢ converges to P*. P* is an
SBR if it is expanding and there exists a homoclinic
point g of P*.

The existence of infinitely many repelling cy-
cles of T' in a neighborhood of P* when it is an
SBR (i.e. the existence of chaos in the sense of Li &
Yorke [1975]), has been proven by Marotto [1978]
for endomorphisms of R", n > 2. In Barugola et al.
[1986] and Gardini [1992a] the bifurcation value is
characterized in terms of critical curves as follows.
The bifurcation, say at A,, which determines the
transition of P* to SBR is a homoclinic bifurcation
which involves critical points of T', and:

(i) P* is not an SBR iff all the rank-1 preimages
of P*, distinct from itself, are external to d’;

(ii) an annular absorbing area d;, C d’ exists iff P*
is not an SBR;

(iii) a value A, is the SBR bifurcation value iff (1)
for A < A, all the rank-1 preimages of P*, dis-
tinct from itself, are external to d’; and (2) at
A = )\, a preimage of rank-1 of P* belongs to
Od', and it possesses a sequence of preimages
entering U, U being a neighborhood of P* such
that all the eigenvalues of DT(p) are greater
than 1 in absolute value for any p € U.

Note that the property stated above, that at
A = )\, a preimage of rank-1 of P* belongs to od’,
coupled with the fact that 8d’ consists of critical
arcs, implies that at the SBR bifurcation value, all
the critical arcs T*(byag) for k greater than a suit-
able value pass through the fixed point P*.
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4. Critical Curves of T and
Construction of the Frontier
F =0D

The map T defined in (1) is clearly a map with
a nonunique inverse. The critical curve LC of T
(the locus of points having at least two coincident
preimages of rank-1) is the image of the locus of
points in which the Jacobian |DT(p)| [the deter-
minant of DT(p) given in (7)] vanishes, that is,

1.5 ¢

(a)

1.5 4

LC.,
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LC =T(LC_1) where LC_; is the curve

LC’_1:<x—%>(y—%>=(lT;;‘2x. (8)

LC_, is an equilateral hyperbola of two branches.
Let LC_1 = LC_1,,ULC_1, where LC_; 4 denotes
the upper branch (for z > 1/2 and y > 1/2) and
LC_,p denotes the lower branch [see Fig. 5(a)]. It
follows also that the critical curve of rank-1, LC,

1.5

(b)

AN

Fig. 5. A = 0.5. (a) Curve LO_y = LC_1,4 U LC_14; (b) curve LC = LC, U LC; (c) excess preimage curves LC,

and LCizl b
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consists of two branches, say LC = LC, U LG,
where LC, = T(LC_1,) and LCy, = T(LC_;).
The two branches of LC_; and those of LC are sym-
metric with respect to A. The qualitative shape of
LC is shown in Fig. 5(b). LC separates the plane
into three open regions, named Zy, Zs and Zj, lo-
cus of points having 0, 2 and 4 distinct preimages
of rank-1 respectively [see Fig. 5(b)]. We note that
a point of LC, possesses only one preimage (that
is, two coincident preimages) of rank-1 at a point
of LC_1,4, while a point p belonging to LC} pos-
sesses two coincident preimages at a point of LC_;
plus two distinct preimages of rank-1, called ex-
cess preimages of p (belonging to the excess preim-
ages curves of LC)). Numerically computed ex-
cess preimage curves of LCj, denoted as LCfll,b and

LC# ,, are shown in Fig. 5(c). These curves, to-
gethef with the branches LC_;, and LC_, sep-
arate the plane into disjoint regions which are dis-
tinct preimages of the regions Zo and Z4. That is,
a point p € Z4 has four preimages of rank-1, each
belonging to one of the hatched regions of Fig. 5(c)
(bounded by LC_; 5 and its excess preimage curves
LC4, , and LC%, ;), while a point p € Z3 has two
distinct preimages in the remaining regions, one
above and one below the branch LC_; 4.

The critical points of the restriction of T to A,
g, already denoted by ¢, ¢;, 4 > 1, in Sec. 2.2,
belong to the intersection of the critical curves LC,
and LC;, with A. That is, c.; = LC_1,NA,
¢=LC,NA and ¢; = T*(c) € T*(LC,) N A, Vi > 1.
We denote also c_1p = LC_13NA, ¢y = LN A
and ¢;p = Ti(cp) € TH(LCy) N A, Vi > 1.

In Fig. 5(b), we see that LC_1 o N LC, consists
of two points, named ag (in the region below A) and
its symmetric af, (above A). We shall see, in Secs. 5
and 6, that for A € (0.4, 1) an absorbing area d’ is
determined, bounded by critical arcs belonging to
apag of LC, and its images.

4.1. Basins of attraction of the
attracting fized points of T

The intersection between the curves LC_; and LC
does not occur for any value of A in the range 0 <
A < 0.4. However in this range the fixed points P},
i = 1, 2, are attracting, and the determination of
an absorbing area is less important. We are inter-
ested in the direct determination of the basins of
attraction D(P}), ¢ = 1, 2, of the attracting fixed
points. As in this range of A-values the origin O
and the point S* are two saddles of T', we may ex-

pect that the boundary of D(P}*) involves the stable
sets of the saddles, W*(O) and W*(S*). Moreover,
denoting D = D(P}) U D(Py), then D (where the
overbar denotes the closure) is the locus of points
having bounded trajectories in the plane, so that
its frontier F = 8D, which we shall call the exter-
nal frontier, is also the boundary of the basin of
attraction of points at infinity, that is, of the basin
of the Equator of Poincaré, and we may expect that
F contains only the stable set of the origin.

We have performed numerical computations of
the basins D(P}) and of D, which we shall discuss
below, distinguishing the intervals 0 < A < 0.2 and
0.2 < X < 0.4 and showing that at A = 0.2 the first
bifurcation of the two basins D(FP;) occurs. The
bifurcation value A = 0.2 is the value of A at which
occurs the first contact between LC_;3 and LCp,
at the point O. In particular, for 0 < A < 0.2, the
critical points c_13 and c; belong to the negative
quadrant of the plane, at A = 0.2, c_1p = ¢, = O,
while for A > 0.2, ¢_1 and c; belong to R2, so that
the region Z4 enters R2.

4.2. Basins in the first regime,
0<x< 0.2

For 0 < A < 0.2, the origin belongs to Z; so that
only one preimage of rank-1 of the origin exists dis-
tinct from O, say O_1 1, belonging to A. The stable
set W*(O) consists of two arcs, connecting O and
O_1,1, symmetric with respect to A. The stable
set W*(S*) is the segment OO_1,1 on A, which is
backward invariant by 7. It follows that the exter-
nal frontier F = W#(0) is made up of two arcs and
their endpoints, while 9D(P) consists of the seg-
ment OO0_;; = W#(S*) on A and the arc of W*(0O)
connecting O and O_1 1 below A. The basin D(F5)
is the symmetric image of D(P;') with respect to A,
and both are simply-connected. Two examples are
shown in Fig. 6.

4.3. Basins in the second regime,
0.2 <2< 04

For 0.2 < A < 0.4, we have again F = W*(O) made
up of two arcs, and D becomes smaller as A in-
creases, maintaining the same qualitative shape [see
the examples in Figs. 7(a) and 7(c)]. Changes occur
in the stable set of the saddle S*. The segment con-
necting the origin to ¢, now belongs to the region
Z4. Thus W#(S*) [which determines the bound-
aries of D(P})], made up of the segment OO_; ; on
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Fig. 6.
(d) A = 0.2, D(Pr) = shaded area.

A and all its preimages of any rank, now has a more
complex structure. It contains infinitely many arcs,
which accumulate on the external frontier F. Note
that, in fact, the four preimages of the arc Ocy are
the arcs Oc_1p and c®; ,O_110n A, and O_j2¢_1p
and O_y 3c_y 3 on the straight line issuing from c_
and orthogonal to A [see Figs. 7(b) and 7(d)]. The
last two segments belong to Zs and possess two
rank-1 preimages, one in Zy and one in Z, and
so on. We have an infinite sequence of preimages of
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(b) A=0.1

(d) A=0.2

(a) A = 0.1, D = shaded area, F = 8D; (b) A = 0.1, D(P}) = shaded area; (c) A = 0.2, D = shaded area, F = 8D;

two curve segments, one in Zy and one in Zs (issu-
ing from points on A which accumulates on O and
O_1,1). It follows that the basin of attraction D(FPy)
is no longer simply-connected. Let us call the im-
mediate basin, Do(P), the simply-connected com-
ponent of D(Py) containing the fixed point P;". The
total basin, D(Py) = Up>o T~ "(Do(PY)), is discon-
nected and made up of infinitely many components,
the preimages of any rank of the immediate basin.
The boundary of each connected component of the
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(c) A=04

(d) A=04

Fig. 7. (a) A = 0.3, D = shaded area, F = 8D; (b) A = 0.3, D(P;) = shaded area; (c) A = 0.4, D = shaded area, F = 8D;

(d) A = 0.4, D(P') = shaded area.

total basin D(Py) belongs to the stable set of S*
(because the boundary of the immediate basin be-
longs to the stable set of S*). In the examples of
Figs. 7(b) and 7(d) the shaded areas show the basin
D(Py), and the symmetric white areas comprise the
basin D(Ps).

The total basins D(P;) and D(Py) will ulti-
mately have a complicated structure of areas above
and below the line A. There follows a sort of un-
certainty with respect to the destiny of the points
near the external frontier : we cannot predict if

a numerically computed trajectory will converge to
Pf or Py.

Note that the bifurcation of the basins occur-
ring at A = 0.2 is a global bifurcation characterized
in terms of critical curves. In fact, it is due to the
contact (and then intersection) of the critical curve

LC}, with the backward invariant sets F = W$(O)
and W#(S*), and the result of this contact is an ex-
plosion of the curve segments which constitute the
stable set W*(S*) (via the entrance of the region

Z4 bounded by LC}, in the area D).
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Any point outside the area D bounded by F has
an unbounded trajectory, not only for the values of
A examined so far, but for any A > 0.

4.4. Beyond the bifurcation at
A= 04

For A = 0.4 the flip bifurcation of the origin and
the Neimark—Hopf bifurcation of the fixed points
P}, i = 1, 2, simultaneously occur. The effect of
these bifurcations is a new composition of the back-
ward invariant set F and the appearance of new
symmetric attracting sets. As already noticed, for
A > 0.4 an absorbing area d’ can be computed, and
D denotes its basin of attraction, whose boundary F
separates in the plane those points having bounded
trajectories from those with unbounded ones. This
external frontier F is clearly related to the back-
ward invariant set F previously described, in the
sense that it is formed of arcs involving the origin
and the periodic points bifurcated from it.

For 04 < XA < X =~ 0.7596, the 2-cycle
R; — Ry bifurcated from O is a saddle so that
F = W3(R; — Ry), and the stable set W*(R; — R)
consists of arcs whose endpoints are the periodic
points O, R;, Rz and their preimages of any rank
[Mira, 1992]. The qualitative shape of F in this
interval of A-values is shown in the examples of
Figs. 8(a) and 8(c).

As regards the study of the dynamics of T in
D, it may be divided into two regimes, called the
third and fourth. In the third one, which shall
be considered in Sec. 5, for 0.4 < A < A* (where
A* ~ 0.70209 is a bifurcation value to be discussed
below) D contains two disjoint symmetric attrac-
tors, belonging to two disjoint symmetric absorbing
areas, dj and dj (d} Ud,y C d'), with two disjoint
basins of attraction D; and D» respectively, such
that D = D; U D,. In the fourth regime, consid-
ered in Sec. 6, for A* < A < 1, D contains only
one absorbing area d' (symmetric with respect to
A). These regimes are separated by a contact bi-
furcation at A = A* between the boundaries of the
invariant chaotic areas existing at A = A* and the
boundaries of their basins of attraction, which will
be discussed at the end of Sec. 5.

4.5. Basins in the third regime
0.4 <X < A*~ 0.70209

As stated above, for values of A in the third regime,
the map T possesses two disjoint symmetric attrac-
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tors, say, A; and A2. These are two closed in-
variant curves I'; and 'y (bifurcated from the focal
fixed points P and PJ) while these are attracting,
or cycles of T, or chaotic invariant sets, belonging
to the absorbing areas d} and d. It is clear that
the two basins of attraction D; and Ds are sepa-
rated by the segment OO_1; of the invariant line
A and its preimages of any rank, that is, the set
Ws(S*) while the fixed point S* is a saddle, i.e. for
A < 0.6, and the closure of the stable set of the 2-
cycle Q1 — Q2 on A, bifurcated from S*, for A > 0.6
in this third regime. These boundaries are quali-
tatively similar to those already described above in
the second regime. We note that with the preim-
ages of rank 1, 2 and 3 of the segment OO_; 1, the
immediate basins, say Dg; and Dy 2, are obtained
[two examples are shown in Figs. 8(b) and 8(d)].
That is, Dyp,1 is the largest simply connected area
of Dy which includes .A;, so that the total basin
D, itself is given by the union of all the preimages
of Do1, D1 = Up>o T "™(Dp,1). It is clear that in-
finitely many preimages of Dy ; exist, and the areas
T~™(Dy,1) accumulate on the external frontier F as
n — oo. The symmetric areas belong to T~"(Dg2)
and give Ds.

As in the second regime, the total basins D; and
Do will ultimately have a complicated structure of
areas above and below the line A, and there is sen-
sitive dependence on initial conditions near the ex-
ternal frontier F: we cannot predict if a computed
trajectory will fall eventually into Dy 1 or Dy 2.

In the example shown in Fig. 8(b), the attrac-
tor A3 in the immediate basin Dy is an invariant
closed curve I'y, and its total basin is the collection
of white areas. The black areas give the total basin
D;. In Fig. 8(d) the attractor Az in the immedi-
ate basin Dp2 (white area) is an invariant chaotic
annular area; the value of A is near the bifurcation
value A*, as can be deduced from the closeness of
the boundary of the invariant chaotic area to the
boundary of its immediate basin.

4.6. Basins in the fourth regime
Ar<ag1

For A* < A < 1 the complicated structure of two
disjoint basins no longer exists, a unique absorbing
area d’ can be determined with the images of the arc
apag of LC,. It includes the absorbing interval of
the restriction of T to A, and its basin of attraction
is the simply connected domain D bounded by the
external frontier 7. The qualitative shape of F is
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Fig. 8. (a) A = 0.5, D = shaded area, F = 8D; (b) A = 0.5, D; = black area; (c) A = 0.7, D = shaded area, F = 8D;

(d) A = 0.7, D1 = black area.

similar to that of Fig. 8(c) until the 2-cycle Ry — Ry
is a saddle, i.e. for A* < A < A ~ 0.7596. At
A = )\ a pitchfork bifurcation of this cycle occurs,
such that for A > Ay the 2-cycle Ry — K3 becomes
a repelling node and a couple of 2-cycle saddles ap-
pear on F. Thus, as A increases, the dynamics of
T in D becomes more complex, and the dynam-
ics of T in the backward invariant set F also be-
comes more complicated. In fact, from the couple
of 2-cycle saddles a sequence of bifurcations of type

box-within-a-box is initiated, so that the resulting
set F becomes formed of invariant curve segments
with a complex structure, and may also become s
fractal set. These observations regarding the exter-
nal frontier F, which may be found in Mira [1992],
need a deeper analysis; however we do not further
pursue our study of F and in the following sections
we will consider the dynamics of T inside D.

We close this section observing that the last
value of A at which a bounded invariant set exists
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is A=1, and at A = 1, D reduces to a closed unit
square. This is a particular bifurcation value, dis-
cussed at the end of Sec. 6, as well as the “explosive”
dynamics of T for the last regime, that is for A >
1 (although not of interest in applications), when
an absorbing region no longer exists and neither
does D.

5. Dynamics of T in the third regime

As we have described in Sec. 4, to study the dynam-
ics of T in this regime (0.4 < A < A*) it is sufficient
to consider points of the immediate basin Do 1. In
fact, symmetric dynamics occur in the symmetric
immediate basin Dp2, and the destiny of the tra-
jectory starting from any other point of the plane
may be deduced from a figure like that of Figs. 8(b)
or 8(d). That is, any point in the total basin Dy
(respectively D2) has an image of finite rank in the
immediate basin Dy (respectively Dp2). A point
of the frontier of the total basins D; or Dy not be-
longing to F has an image of finite rank in the por-
tion of A which belongs to the frontier of Do ; and
Dy 2, that is, converges to the attractor of the one-
dimensional endormorphism gy = T which, in this
regime, is either the fixed point S*, for A < 0.6, or
the attracting 2-cycle @1 — Q2. Points outside D
have divergent trajectories.

For the reason explained above, the figures
given in this section will show only an enlarged
portion of Dy ; containing the attractor and the
absorbing area of interest. Moreover, in order to
avoid heavy notation, in the figures the curves LC; 4
will be denoted henceforth as L; for ¢ > —1, and
L=LC,.

5.1. Dynamics in Do,

The Neimark-Hopf bifurcation occurring at A = 0.4
gives rise to an attracting closed invariant curve I'y
surrounding the repelling focus P;. An absorbing
area including I'; may now be constructed by use
of the procedures we describe below.

Consider the point ag, intersection of LC_; 4
and LC, below A (that is, belonging to Dy 1). By
a_y we denote its preimage of rank-1 belonging to
LC_1,, while a;, i > 1, denotes the image of rank-i
of ag (a similar notation is used, that is, with in-
teger indexes, to denote images of any point of the
plane). For values of A near the bifurcation value
0.4 the critical arcs a;a;+1 = Ti(a_lao), 1 > 0, never
intersect LC_; o (and converge to the attracting set
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I'1). Let A be the value of A at which an arc a;a;41
becomes tangential to LC_1 4, while for A > A an in-
teger m exists such that a,,am+1 intersects LC_q 4.
Thus for A > ), the images of the arc a_jap of
LC_,, intersect LC_14 itself, and this permits us
to apply a general procedure first described by Mira
[1980] to determine the absorbing area. This is the
reason why we discriminate between the two inter-
vals of values for ), and describe a different proce-
dure in each of them. To determine the absorbing
area d’ we use Procedure 1 for 0.4 < A < X ~ 0.487
and Procedure 2 for A < A < \* ~ 0.70209:

Procedure 1. Let h_; be a point of LC_1 4 such
that a_jap C a_1h_1 and a critical arc anh,, of
LC,,, intersects LC_1, at a point by, with by €
a_jag. Then the area d’ bounded by the critical
arcs

od = bias Uajaa U---U amam41 U am+101 (9)

is an absorbing area.

Procedure 2. Let m be the first integer such that
the critical arc a;,am41 of LCy, , intersects LC_ 4,
and let by be the intersection point furthest from
ao. Then the area d’ whose boundary is defined in
(9) is an absorbing area.

An example in which d' is constructed by Pro-
cedure 1 is shown in Fig. 9. Procedure 1 gives an
absorbing area d’ which is contained in the region
Z3 below the curve LC_y,. This implies that of

Fig. 9. A = 0.45; absorbing area d’' (hatched area), here
m=4.
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the two distinct preimages of rank-1 of any point
of d’, only one belongs to d’ itself; we call it the
local inverse. The behavior of T in d' is like that
of a map with a unique inverse, and with T(d') C
d’, an invariant area cannot be obtained in a finite
number of applications by T, as T"*(d’) C T™(d')
for any n > 0. Thus we have lim, o T"(d') =
Nn>0T™(d’) =V, where V is a closed invariant area
bounded by a closed invariant curve. Here we have
oV =T1.

As in the interior of V the local inverse of T is
contractive with Py being an attracting focus, we
may conclude that I'; is globally attracting in Dy 1,
apart from the repelling focus Py.

For A > ) the images of the critical arc apa;
of LC, intersect LC_;, and we use Procedure 2
to determine an absorbing area. In the example
shown in Fig. 10(b) the boundary of d’ is formed
by six critical arcs: bia; C LC,, a1a2 C LCig,,
aza3 C LCsq, azay C LC3,, agas C LCyg,
asby C LC5,a.

Qualitative changes occur in the absorbing area
d', not only because we use Procedure 2 (as it is easy
to see that it coincides with Procedure 1 assuming
h_1 = ag), but due to the fact that for A > X, &’
possesses a portion, say 8, above LC_; 4. In fact,
a first consequence is that now an annular absorb-
ing area may be constructed (as discussed below),
and a second consequence is that now in d’ dynam-
ics typical of a two-dimensional endomorphism may
appear. In fact, the area 6; = T'(§o) is the locus of
points of d’ having two distinct preimages of rank-
1 in &' itself, one in 8y and one below the curve
LC_14. For this reason the points of §; are called
“branching points,” and we refer to §; as “the area
of branching points.”

Let us first describe the two bifurcations of I'y
that can be characterized in this regime. The first
one is due to the tangency, and then intersection,
of I'y with LC_; 4. The contact between I'y and
LC_1 4 occurs at A = A1, A1 = 0.48735. The shape
of I'; is smooth and similar to an oval for 0.4 < A <
A1, but a qualitative change occurs in its shape as
X crosses the bifurcation value A1, because this con-
tact causes the appearance of oscillations in I';. At
A = \; the invariant attracting curve I'; is tangen-
tial to LC_1 4, and thus to all the critical curves
LC; for any ¢ > 0; while for A > Ay, I'y inter-
sects LC_1 4 in two points and possesses a portion of
curve above LC_1 4. Thus, the qualitative change of
I'; (already described in Gumowski & Mira [1980b,
p. 217)) is due to the portion of the invariant curve

above LC_; , which is folded on LC, and causes
the deformation.

We note that any point of I'; has two distinct
preimages of rank-1, only one of which belongs to
I';. Thus, before the contact, when I' is below
the curve LC_1 4, its rank-1 distinct preimage, say
I'1,—1, is above LC_; o and disjoint from [';. At the
contact of I'y with LC_1, we also have a contact
between the invariant curve and its rank-1 preim-
age; NIy 1 = MNLC_1,=T1,-1N LC—I,a is
the contact point at A = A;, while for A > Ay it
is the set of intersection points between I'y and the
curve LC_; [see the points pg and gy of LC_1, in
Fig. 10(a)).

The first bifurcation of I'y, at A = Aj, causes
the appearance of smooth oscillations on the in-
variant curve. The oscillations become more pro-
nounced (and the annular area becomes wider) after
the second bifurcation of I';, which occurs, in our
example, when the invariant curve crosses LC_j 4
in the two points a_; and ag, at A = A ~ 0.505.
This is due to the fact that after this crossing, the
invariant curve I'; will be tangential to LC, in two
points, one above and one below LC_1, [see the
points p; and ¢; in Fig. 10(a), rank-1 images of
the points pg, external to a_iap, and go, internal
to a_1ag)-

For A > ), while P} is not an SBR, not only
can a simply-connected absorbing area d’' be con-
structed, but also an annular absorbing area dj,
d,, C d', giving a hole surrounding Py, defined as
H(P}) = d'\d,. We call the internal boundary of
d!, 8;d,,, the boundary of H(Py), while the exter-
nal boundary of d,,, O.d,, is the residual part of
the boundary of the annular area, so that dd, =
8;d,U8,d},. The annular absorbing area can be con-
structed having the external boundary 9.d, = 0d'
and the internal boundary made up of critical arcs
belonging to T*(vo) for i = 1,..., K for a suitable
K > m, where v9 = a_1aq if by is internal to the
interval a_1ag, Yo = bpag otherwise (in particular,
for A > Ao it is yo = boag).

In the example of Fig. 10(d) the boundary of
d' is formed by critical arcs belonging to the images
of rank-i, i = 1,..., 5, of the arc bpap, while the
internal boundary of d) is formed by critical arcs
belonging to 7 images of bpag. In the examples of
Figs. 10(e) and 10(f), the boundary of d; (both in-
ternal and external) is formed by arcs belonging to
6 images of bpag.

At first the annular absorbing area d;, is very
thin, almost indistinguishable from I'y, but it
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Fig. 10. (a) A = 0.55, invariant curve I';; (b) its absorbing area d’; (c) A = 0.6, invariant curve I'1; (d) its annular absorbing
area d., the absorbing area d' is the simply connected area with boundary equal to 8.d),, the external boundary of d’;
(e) A =0.61, annular area d; and the attracting 7-cycle of periodic points P;, i = 1,..., 7; (f) A = 0.63, annular area d, and

points of the attracting 7.2-cycle inside it.

becomes wider on increasing A. Equivalently, the
hole surrounding Py, H(P}) = d'\d;, decreases.
We have not yet spoken about the points which
are attracted into this annular area. From the con-
struction of d' it follows that any point of the

immediate basin Dy ; has an image of finite rank
inside d’, and inside d’ any point apart from P} has
an image of finite rank inside the annular area d,.
To see this we observe that the points of the hole
H(P}) possess two distinct preimages of rank-1, one
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outside the hole and one inside the hole. That is,
T is locally invertible in the hole H(Py), and this
inverse possesses an attracting focus in Py. Thus,
the asymptotic behavior of 7" must be examined
inside the annular area d,.

We conjecture that while an attracting curve
I'; exists, it is globally attracting in d,. We cannot
prove that no cycle exists outside I'; by direct com-
putation; however we can motivate our conjecture
as follows. The dynamical behavior of the images
of the arc vy is indicative of the generic trajectory
in d},, and we observe numerically that an image of
high rank is almost indistinguishable from I';. As
the boundary of T™(d,,) consists of critical arcs be-
longing to the images of 7, for any n > 0, it follows
that Np>o T"(d;,) = I'1 in our example.

As Ty, has a unique inverse on I'y, 7" must have
on I'; the dynamics of an invertible map of the circle
into itself (in the sense that Tt, is homeomorphic to
such a map). Thus, the trajectories on the attract-
ing curve I'y may be periodic (when the rotation
number is rational) or quasiperiodic (when the rota-
tion number is irrational). Cycles on I'; appear and
disappear via saddle-node bifurcations, and boxes-
in-files bifurcations (described in Mira [1987]) have
been observed.

(a)

Fig. 11.
N2 =1024; (b) The chaotic attractor inside d,.

A specific 7-cycle on Iy is shown in Fig. 10(e).
It is specific because it is related (in some way,
as yet unknown) to the “disappearance” of the at-
tracting curve I'y. The 7-cycle is born in a saddle-
node bifurcation, and the invariant curve I'; may
still exist, made up of the invariant manifolds (het-
eroclinic connections) between the attracting and
repelling points of the two 7-cycles (an attracting
node and a saddle) born at this bifurcation. We
note however that for the attracting 7-cycle node
shown in Fig. 10(e) the eigenvalue associated with
the direction transverse to the closed curve is neg-
ative (which is possible only in endomorphisms),
and it will cross the value —1. That is, the sta-
ble 7-cycle undergoes a flip-bifurcation, it becomes
a saddle and an attracting 7.2-cycle appears [see
Fig. 10(f)]. This is the first of a sequence of bifur-
cations of type box-within-a-box (that is, no longer
boxes-in-files), and this marks the difference be-
tween this 7-cycle and the cycles of T occurring be-
fore on I'y. The cascade of flip and fold bifurcations
(similar to those occurring in a one-dimensional en-
domorphism), gives rise to attracting sets which no
longer belong to a curve of the plane. An exam-
ple is shown in the 7.2-band chaotic attractor of
Fig. 11(a), which has a fractal dimension (between
1 and 2).

(b)

(a) A = 0.641, histogram of the 7.2-band chaotic attractor in the rectangle [0.5, 1.09] x [0.14, 0.73], N1 = 8192,
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(a)

Fig. 12.
N2 = 1024; (b) The chaotic attractor inside d,.

Throughout this work, we give in the color fig-
ures (with color scale) the histogram of the attract-

ing set, obtained as follows. After a transient of'

N, iterations, the points of Vs iterations have been
plotted, for each of the 19100 initial conditions
(x0, yo) in the rectangle [z inf, z sup] x [y inf, ysup].
The values of N7 and N», and the rectangle of the
plane, are reported in the figure captions. The color
scale indicates the frequency at which a pixel was
hit by an orbit.

The dynamics observed in our example con-
cerning the bifurcations on a closed invariant curve
and those initiated from a particular cycle are sim-
ilar to those described by Mira [1980] in a differ-
ent example (see also in Gumowski & Mira [1980],
pp. 352-356).

The 7.2-band chaotic attractor of Fig. 11 gives
rise to the 7-band attractor of Fig. 12 by a global bi-
furcation which is analogous to the closure of boxes
of the second kind in the box-within-a-box bifurca-
tion structure (it involves the 7-cycle saddle existing
between each pair of bands).

The global bifurcation which causes the abrupt
increase of the chaotic set from that of Fig. 13 to
that of Fig. 14 is another contact bifurcation, be-
tween the chaotic 7-bands attractor and the bound-
ary of its basin of attraction. This global bifurcation
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(b)

(a) A = 0.643, histogram of the 7-band chaotic attractor in the rectangle [0.5, 1.09] x [0.14, 0.73], N1 = 8192,

is analogous to the closure of boxes of the first kind
in the box-within-a-box bifurcation structure.

We shall see several other global bifurcations
similar to those described above. Let us call them
contact bifurcations of the second kind and con-
tact bifurcations of the first kind, involving cyclic
chaotic areas d;. The distinction bétween these two
kinds of contact bifurcation has been made for the
first time by Mira, see the exemplary case with
several examples in Mira & Narayaninsamy [1992].
From this paper and from Mira [{1992] the two bi-
furcations may be characterized as follows. Let d;
denote a k-cyclic chaotic area (i.e. invariant for the
map T%), k > 1.

A contact bifurcation of the second kind is due
to the contact between the boundary of d; and the
boundary of its basin of attraction D(d;) at a point
belonging to the frontier of the immediate basin of
another attracting set. If the attracting set on “the
other side” is a chaotic area, the contact causes the
reunion of chaotic areas.

A contact bifurcation of the first kind is due to
the contact between the boundary of d; and the
boundary of its basin of attraction D(d;) at a point
belonging to the frontier of the basin of another
attracting set which is not on the immediate basin.
If the attracting set on “the other side” is a chaotic
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(a) (b)

Fig. 13. (a) A = 0.6439, histogram of the 7-band chaotic attractor in the rectangle [0.5, 1.09] x [0.14, 0.73], N, = 8192,
N2 = 1024; (b) The chaotic attractor inside d,.
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(a) (b)

Fig. 14. (a) A = 0.644, histogram of the chaotic attractor in the rectangle [0.5, 1] x [0.13, 0.77], N1 = 8192, N2 = 1024;
(b) The annular chaotic area dg.
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area, the contact causes the spread into wider chao-
tic areas (cyclical or not).

Let us consider again the transition from the
7.2-cyclic chaotic attractor of Fig. 11 to the 7-cyclic
attractor. The contact between one of the areas
of the 7.2-cycle attractor and its basin boundary
occurs at a point belonging to the local stable set of

(a) A =0.641

8.717

8.718

(c) A =0.64218
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the 7-cycle saddle, which separates two immediate
basins, giving rise to the reunion of the immedi-
ate basins in contact. As this occurs pair by pair,
the resulting set is a 7-band chaotic attractor. In
Fig. 15(a) is shown an enlargement of a portion
of Fig. 11(a). This figure shows two bands of the
7.2-cyclic chaotic attractor near the point V of the

8.713 8.721

(b) A =0.64218

8.717

8.718

(d) A =0.64219

Fig. 15. (a) A = 0.641, enlargement of the 7.2-band attractor of Fig. 11(a) near a point, denoted by V', of the 7-cycle saddle,
and portions of the stable set W*(V) and unstable set W*(V) of V; (b) A = 0.64218, enlargement of the 7.2-band attractor
near the stable set W*(V}); (c) A = 0.64218, enlargement of the figure in (b) near the saddle point V; there is no contact
between the 7.2-band attractor and the stable set W*(V); (d) A = 0.64219, enlargement near the saddle point V, crossing

between the 7-band attractor and the stable set W* (V).
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7-cycle saddle of T, together with portions of the
stable set W*(V') (which separates the two branches
of the attractor) and the unstable set W*(V') of V.
Increasing A the two bands come very close to the
stable set W*(V'), as it is shown in Fig. 15(b) at
A = 0.64218. This value of A is very near the value
of contact bifurcation between the chaotic attrac-
tor and its basin boundary, as it appears from the
enlargement shown in Fig. 15(c) [W*(V) belongs
to the basin boundary|]. The value A = 0.64219
is already beyond the contact bifurcation value, as
shown in Fig. 15(d), because the “old” two chaotic
bands cross the stable set of V. The bands are
no longer invariant for the map 7'# but only for
T7, that is, these now belong to the same band of
the 7-cyclic chaotic attractor. Thus, a contact bi-
furcation of the second kind occurs at a value A,
0.64218 < Ay < 0.64219. At A = ), the bands of
the chaotic attractor have a-contact with W*(V).
This example illustrates also that such a contact bi-
furcation corresponds to the homoclinic bifurcation
of the 7-cycle saddle, because before the contact
there are no homoclinic orbits of the 7-cycle saddle,
while at the contact and after the contact (when
the crossing has occurred), the stable and unstable
sets of the cycle possess common points.

The basin of attraction of one of the 7 areas,
considering the map T7, becomes very complex. It
is formed by an immediate basin and its infinitely
many preimages of any rank, which are jumbling
in a very complex way with the preimages of the
other immediate basins (giving a fuzzy boundary in
parts which are accumulation of such disjoint open
sets). The contact occurring between one of the 7-
band and its basin boundary takes place at a point
(or points) not belonging to the frontier of another
immediate basin. The same type of contact occurs
for each band, so that the result of this contact
bifurcation (of the first kind) is an explosion of the
seven disjoint chaotic areas into a single annular
chaotic area.

This invariant annular chaotic area [see
Fig. 14(b)] is bounded by arcs of critical curves,
and isolates the hole H(Py), which is an area with-
out any periodic point of T, apart from the fixed
point P;. In fact, for any value of A at which an
annular area d/, exists, it attracts all the points of
the immediate basin Dy ; (apart from Pf). Inside
d!,, we may have two or more coexisting attractors.
Although we have not observed this occurrence, it
is a generic behavior of nonlinear two-dimensional
endomorphisms.

Several bifurcations take place inside the annu-
lar absorbing area, while the dynamics on A are
regular. In fact, §* is attracting on A for 0 < A <
2/3 = 0.6, while for 0.6 < A < 0.816, a 2-cycle
Q1 — Q3 exists on A, which is attracting on A but
a saddle of T for the values of A which interest us
in this regime, that is, for A < A*.

We recall that in this regime two symmetric at-
tractors and basins exist. The bifurcation of both
these attractors and basins of attraction occurs at
A = A* (A* ~ 0.7029) when an arc of the criti-
cal curve azay € LC3, on the boundary of the an-
nular absorbing area becomes tangent to A at the
periodic point Q3. Thus, a contact bifurcation of
the second kind occurs, causing the reunion of the
two disjoint annular chaotic areas into a single con-.
nected chaotic area [see Figs. 16(a) and 16(c) before
the bifurcation, Figs. 16(b) and 16(d) after the bi-
furcation]. In the magnifications of Fig. 17, several
images of a small arc of LC_;, (also reported in
that figure) are shown, which show the contact oc-
curring at A = A*. A critical point r3, image of
rank-4 of a point 7_; belonging to the small arc of
LC_; 4, shown in Fig. 17(a), merges into the peri-
odic point @;.

The points @1 and Q2 of the 2-cycle belong
to the area of branching points §;, so that this
area contains some points whose infinite sequence
of preimages under the local inverse, which gives
points above LC_1 4, converge to the 2-cycle. That
is, a local stable set of the 2-cycle saddle exists for
the local inverse of T in 8. Moreover, the point r_y
defined above also belongs to 61, and starting from
r_1 we may construct infinitely many sequences of
preimages in dj,. For example, r_; has two distinct
preimages, one in & and the other below LC_j,,
for each new point we take all its preimages in d,
creating new branches whenever we get a point in
the branching area 6. If one of these preimages falls
into the local stable set of the 2-cycle saddle for the
local inverse of T in &y (which is the unstable set
of the 2-cycle for T'), then we would have a homo-
clinic orbit of the 2-cycle. We conjecture that this
indeed occurs at A = A\*, and homoclinic orbits of
the 2-cycle {Q1, @2} exist. Our conjecture may be
numerically verified; in Fig. 17(d) are shown images
of rank-i, for i from 1 to 100, of points taken on a
small arc of the local unstable set issuing from @
[the direction of which is (1, —1)], and we can see
points mapped by T above the line A, which means
that the unstable set of the 2-cycle intersects the
stable set of the same cycle on A, creating homo-
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(a) A =0.702

A Double Logistic Map 165

(c) A=0.702

(d) A=0.703

Fig. 16. (a) A = 0.702, annular chaotic area d, below the diagonal A; (b) A = 0.703, a portion of the connected chaotic area;
() A = 0.702, histogram of the annular chaotic attractor in the rectangle [0.4, 1] x [0.05, 0.9], N1 = 4096, N, = 1024;
{(d) X = 0.703, histogram of the connected chaotic attractor in the square [0.07, 1] x [0.07, 1], N1 = 4096, N2 = 1024.

clinic points. This implies the existence of infinitely
many repelling cycles near the 2-cycle on A, cy-
cles which do not belong to A, but having @ and
@2 as accumulation points. This may also be the
reason for the density of the points of a trajectory

in these regions, as observed by numerical com-
putations. The main difficulty in proving the ex-
istence of homoclinic orbits in this case (as well
as in the case shown in Fig. 15) is due to the fact
the the cycle is a saddle. We shall see that in a
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(c) A=0.7025 <

Fig. 17.

0.450

L il
[ S S T

X =0.7025 1.68

8.580 ()

(a) A = 0.70209, several images of the small arc of LC_1, denoted by L_1; (b) A = 0.7021; and (c) A = 0.7025,

where the images of the small arc L_; of LC_; , cross A; (d) A = 0.7025, images of rank-i, for i from 1 to 100, of 2000 points
taken on a small germ (of length 0.0001) of the local unstable set issuing from Q. '

similar bifurcation involving repelling nodes or re-
pelling foci (the SBR bifurcations of S* and of the
fixed points P;, Py, in the next section), the exis-
tence of infinitely many homoclinic orbits is easier
to prove.

6. Dynamics of T in the Fourth
Regime

After the contact bifurcation at A = A* the two
disjoint attractors (for A\ < A*) become one single
attractor (for A > X*) inside a unique absorbing
area d’ (simply connected), which is always bounded
by the images of an arc of LC_; 4, which is now the
arc apag, where a; is the symmetric image of ap

with respect to A (ap and ag are the two points of
intersection between LC_,, and LC,).

An example is shown in Fig. 18. Figure 18(a)
shows the simply connected absorbing area d’ and
Fig. 18(b) shows the chaotic area d contained in
d'. It may be noted that the chaotic area d is con-
nected but not simply connected. Three holes exist
inside d’, one surrounding the fixed point S* (which
is now a repelling node), say H(S*), the other two,
H(Py) and the symmetric H(P5), are around the
fixed points P and Py (repelling foci). The bound-
aries of these holes consist of critical arcs belonging
to the images of the arc agpay.

The hole H(S*) disappears at the SBR bifurca-
tion of S*, at A = A; ~ 0.714 (see Fig. 19). At this
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1.2

12
(a) A =0.705 (b) A =0.705

Fig. 18. X = 0.705. (a) The absorbing area d’; (b) histogram of the chaotic attractor in the square [0.07, 1] x [0.07, 1],
Ny = 4096, N2 = 1024.
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(a) A=0.714 (b) A =0.714

Fig. 19. ) = 0.714. (a) The absorbing area d’; (b) histogram of the chaotic attractor in the square [-0.1, 1.1] x [-0.1, 1.1},
N, = 4096, N, = 1024.
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bifurcation value, the two symmetric rank-1 preim-
ages of §* outside A fall on the boundary of d’, and
thus on an arc of a critical curve. All the critical
curves LC;, for i > 3 pass through S* [some are
shown in Fig. 19(a)]. This means that at A = A; a
point belonging to the portion of LC_, , below A,
say r_1, has an image, say g, which merges into S*
(and a symmetric point exists, say r’_;, belonging to
the portion of LC_1 4 above A, such that rj, = §*).
Taking the infinitely many sequences of preimages
of r_, contained in d’, we can see that many points
will fall in a neighborhood of S* in which the local
inverse giving points above LC_y 4 is a contraction
(having an attracting node in S*). This process il-
lustrates the infinitely many homoclinic orbits of S*
existing after the SBR bifurcation, which persist for
any value of A > )s. This is due to the fact that
S* remains an attracting node for the local inverse
above LC_1 4, for any A > );, and its rank-1 preim-
age below LC_1 4 belongs to d', so that we may con-
struct the sequences of preimages starting from S*
obtaining points in a suitable neighborhood of S*.
We recall [Marotto, 1978; Gardini, 1992a] that to
each homoclinic orbit are associated infinitely many
repelling cycles of T', which belong to Cantor sets of
points invariant for some power of T'. Note however

L

v

(a) A=0.737

that this bifurcation is not the SBR bifurcation of
the fixed point S* for the restriction of T on A (this
will occur later at a greater value of 1), so that none
of the infinitely many periodic points of T' near S*
belong to A.

After the SBR bifurcation of S* the absorb-
ing area d’ is connected with two holes, H(Py) and
H(Py). These holes decrease on increasing A and
disappear at the SBR. bifurcation of the fixed points
P} and Py, which occurs at A = A, ~ 0.737 (in
Fig. 20 we can observe the critical curves LC;, for
i > 1 passing through the fixed point P;'). We may
repeat the same reasoning as above, with the differ-
ence that we consider the local inverse of T which
gives points in d’ below LC_; 4, for which the fixed
points Py and Py are attracting foci for any value
of A > X, It follows that P; and P are snap-back
repellers for A > A, (with all that this statement
implies about the dynamics of T').

After the SBR bifurcation of P and P, the
chaotic area d coincides with d' and is simply con-
nected [see Figs. 20(b) and 21(a)]. Let us make an
observation on the chaotic area d C d’ (with d sim-
ply connected or not). As we have seen in several
figures, the generic trajectory that we observe nu-
merically is often chaotic, but this does not mean

(b) A =0.737

Fig. 20. X = 0.737. (a) Portion of the absorbing area d’; (b) histogram of the chaotic attractor in the square [-0.1, 1.1] x

[—0.1, 1.1], Ny = 4096, N, = 1024.
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that in this area there are no stable cycles. At-
tracting cycles may exist (and we conjecture that
they do) with small basins of attraction, having a
complex shape and fuzzy boundaries (on which the
dynamics of T are chaotic). That is, unstable chaos
is likely to occur, and the trajectories observed in
these chaotic regimes are due to truncation errors.

Up to now, T has been studied as if it were a
map having only 0 or 2 preimages of rank-1. This is
because the invariant area d’' has void intersection
with the branch LC_4, so that the fact that T is
a map with 0, 2 or 4 preimages of rank-1 has only
influenced the construction of the basin of attrac-
tion of the absorbing areas. However, as is shown in
Fig. 21(a), now the branch LC_, 3 is quite near the
invariant area d’, and we shall see that the influence
of the 0-2-4 character of the inverses of T' comes to

play some role now, as also before, at lower values
of A.

1.2

LG,

LCy,

(a) XA=0.75

1.2
1.2
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We have observed a decrease in the “chaotic-
ity” of the trajectories inside d’ as it approaches
LC_, 3. This may be explained by sequences of re-
verse flip and fold bifurcations which make previ-
ously existing cycles disappear (that is, attracting
2k-cycles disappear by reverse flip-bifurcation leav-
ing an attracting k-cycle, previously repelling; or a
couple of two k-cycles disappear via reverse fold-
bifurcation). Such a process can easily be observed
in one-dimensional endomorphisms, for example in
cubic maps or in bimodal maps without symmetry
(several examples are shown in Gardini & Lupini
[1992]). A similar process (i.e. reverse bifurcations)
occurs also in two-dimensional endomorphisms. In
our opinion, in this example it begins when the ex-
cess preimage curves of LC_y 3, that is LC®} , and
LC’izl,b, have a contact and then intersect the in-
variant area d’. This contact occurs at a value of A
in the previous regime. Moreover, noting that the

124

(c) A=0.283

1.2

Fig. 21. (a) A = 0.75 chaotic area d'; (b) A = 0.76, attracting node @1 — Q2 on A, in the absorbing area d'; (c) A = 0.83,

attracting 2%-cycle on A.
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images of the area of d’ crossed by the excess preim-
ages are mapped by T to points near A and near the
2-cycle Q1 — @2, we may explain the disappearance
of periodic points outside A, near the 2-cycle on A.
These disappearances are however compensated by
the increase of cycles with periodic points near the
other three fixed points of 7' (S*, P{ and P3) and
their SBR. bifurcations.

At X\ ~ 0.76, the 2-cycle on A becomes an at-
tracting node of T' [Fig. 21(b)] and, even if d’' con-
tains infinitely many repelling chaotic sets (as S*,
Py and Pj are SBRs), the generic trajectory nu-
merically observed converges to the attracting cy-
cle Q1 — Q2. Now a neighborhood of this 2-cycle
exists containing no periodic points of T', and the
preimages of this neighborhood give the basin of at-
traction of the 2-cycle, which has certainly a very
complex shape, with a fuzzy boundary.

The disappearance of cycles in a neighborhood
of Q1 — Q2 described above shows that the 0-2-4
character of the inverses of T influences the dy-
namics of T before the contact of d' with LC_;p
(through the effect of the excess preimage curves).
However, the main influence on the dynamics of T
takes place after the contact (and then intersection)
of &’ with LC_15. This is because points of d' be-
low LC_1 are mapped by T in a region (bounded
by critical arcs of some LC;, and an arc of LCp)
containing points having four distinct preimages of
rank-1 inside d’ itself. From now on, when chaotic
dynamics are observed, this region is the one more
frequently visited by the points of a trajectory.

The flip-bifurcation of the 2-cycle in A is the
one due to the logistic map gy on A itself. A stable
22.cycle in A is observed in Fig. 21(c). This 22-
cycle however becomes repelling (in the direction
transverse to A) due to the two-dimensional char-
acter of T, as it undergoes a flip bifurcation due to
the eigenvalue related to the eigenvector transverse
to A. In Fig. 22(a) an attracting 8-cycle is shown
which does not belong to A; the 22-cycle on A
is attracting for the logistic map g, but is a saddle
of T.

Considering the points of the 8-cycle as fixed
points of the map T® we can repeat the same ob-
servations made for the fixed point Py of T

— the points of the cycle undergo a Neimark-Hopf
bifurcation which gives rise to 8 closed invariant
curves [Fig. 22(b)];

— chaotic sets and a contact bifurcation of the sec-
ond kind produce a 4-cyclic annular chaotic area

[Fig. 22(c)};

1.2

L,

1.2

Fig. 22. Attracting sets inside the absorbing area d'.
(a) A = 0.835; (b) A = 0.84; (¢) A = 0.845.
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— some SBR bifurcation gives a 4-cyclic chaotic tic areas gives rise to a single observed chao-
area, not annular [Fig. 23(a)]; tic attractor in the absorbing area d' (d = d')
— contact bifurcation of the first kind between [Figs. 23(b) and 23(c)].
the 4 basins of attraction and the 4-cyclic chao- In Fig. 24(a) an attracting 4-cycle of T' is shown,

(a) A=0.852 (b) A =0.854

Int. J. Bifurcation Chaos 1994.04:145-176. Downloaded from www .worldscientific.com
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(c) A=0.865

Fig. 23. Histograms of the attracting sets in the square [-0.1, 1.1] x [—0.1, 1.1], Ny = 1024, N, = 1024. (a) A = 0.852;
(b) A = 0.854; (c) A = 0.865.
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121

L-l,a L

L

(a) A=088 1.2

(b) X =0.8835

1.2

»r

Fig. 24. Attracting sets inside the absorbing area d’. (a) A = 0.88; (b) A = 0.8835.

for which we repeat the sequence:

— it bifurcates via Neimark—Hopf giving rise to 4
closed invariant curves [Fig. 24(b)];
periodic orbits on the closed curves can be
seen and then again closed curves followed by
transition into 4-cyclic annular chaotic areas
[Fig. 25(a), with a magnification in Fig. 25(b)];
— contact bifurcation of the first kind giving rise
to a unique observed chaotic attractor in the
absorbing area d’ (d = d') [Fig. 25(c) with a
magnification in Fig. 25(d)).

On A, gy has an attracting 22-cycle in Fig. 22,
an attracting 23-cycle in Figs. 23(a) and 23(b), 2-
cyclic absorbing intervals in Figs. 23(c), 24 and 25.
All the repelling cycles on A are saddles of T

Now that the dynamics on A are also chaotic
(i.e. for A > 15 ~ 0.8566), the SBR bifurcation of
S* for the restriction of T on A, that is for gy, is
approached. At A = 0.89 [see Fig. 26(a)] the two
critical curves LCy, and LC3, intersect A at the
two points c2 and c3 which are near the fixed point
S*. The SBR bifurcation of S* for gy occurs when
the two critical curves LCs, and LC3, intersect A
at the fixed point c3 = c3 = S* (at A = A}, ~
0.8928). Before this, all the points homoclinic to
S* in d' were outside A. After, there are points
homoclinic to S* also in A.

It seems that the bifurcation mechanism which
governs the “route to chaos” of the two-dimensional
map T is not related to that of the one-dimensional

logistic map gy, or is only partly related because
it is due to bifurcations which are typical of the
two-dimensional map, at least for values of A below
A1s- However, increasing the parameter ), the anal-
ogy with the one-dimensional case (logistic map)
seems to become more adequate. The chaotic area
d (equal to d’) tends to become a unit square (see
Fig. 26), that is, approaches the boundary of its
basin of attraction. At A = 1 the SBR bifurcation
of the fixed point at the origin O occurs, and d =
d’ = D is exactly the unit square (the vertices of the
unit square are the distinct preimages of the origin).
It is an invariant chaotic area but is not absorbing
(a neighborhood U of d' does not exist because the
expanding fixed point O belongs to the boundary of
d'). At A = 1, T is chaotic in the unit square in the
precise sense of the term (that is, no attracting cy-
cle may exist, all the possible cycles of T have been
created and all are repelling). In fact, the map 7?2
reduces to two disjoint equations, two squared logis-
tics without interaction: T?(z, y) = (f%(z), f?(v))
where f(z) = 4x(1 — z). LC_; becomes the pair of
straight lines £ = 1/2 and y = 1/2; LC, the straight
lines y = 1 and x = 1; LC}, the lines z = 0 and
y = 0 [see Fig. 26(f)]. At A = 1, gy is chaotic on
the segment [¢1, ¢] = [0, 1] on A.

At X = 1 the last contact bifurcation of d’' oc-
curs. It is a homoclinic bifurcation (SBR of the
origin). This is a particular contact bifurcation of
the first kind. The difference from those previously
seen is that the attractor “on the other side” of the
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(a) A =0.88498 (b)
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(c) A =0.88499 (d)

Fig. 25. Histograms of the attracting sets. (a) A = 0.88498, 4-cyclic annular chaotic areas in the square [0.1, 1.1] x [0.1, 1.1];
(b) enlargement of the portion of (a) in the rectangle [0.474576, 0.546674] x [0.332147, 0.375085]), N1 = 4096, N2 = 1024;
(c) A = 0.88499 histogram of the attracting set in the square [—0.1, 1.1] x [—0.1, 1.1}; (d) enlargement of the portion of (c) in
the rectangle [0.474576, 0.546674] x [0.332147, 0.375085], N; = 8192, N, = 2048.

basin is a point at infinity (instead of an attractor at For A > 1, the unique attractor is a point at
finite distance), so that it will have the catastrophic  infinity. In the unit square there survives a Cantor
effect of a disappearance of the bounded chaotic  set A, invariant for T, with repelling cycles, that is,
attractor. a “strange repeller.”
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